Legend and Innovation
In the making for more than twenty years, the ultimate Contest / DX experience is here. Kenwood’s long-awaited flagship model is equipped with the latest technology that embodies an entirely new HF standard. **TS-990S**
1973 TS-900
This all-band SSB transceiver made history with its state-of-the-art technology.

1982 TS-930
The world’s first Ham Radio HF transceiver equipped with a built-in automatic antenna tuner.

1985 TS-940
This HF transceiver offered the high dynamic range that won the struggle through the Cycle 22 pile-up.

1989 TS-950
Another world’s first, this HF transceiver came standard with a built-in DSP.

Repeated innovation turns the tradition into a legend.
The TS-990S comes equipped with dual receivers for simultaneous reception on different bands, it also features narrow-band roofing filters on the main receiver in a full down-conversion configuration. The TS-990S achieves the highest basic reception performance of any radio in the TS series, through the careful selection of circuits, components and accelerating analysis using triple DSP configuration. Also, thanks to the dual TFT display and superior panel layout, it achieves both comfortable visibility and operability. Our top-of-the-line transceiver is for all radio operators who love HF.
A key point in tapping maximum performance from the 1st mixer in actual operation (say, CW operation) is to prevent the outflow of unnecessary signals, other than the target signal, from the mixer to the subsequent stage. This is because it can tap the maximum performance of the digital IF filter using the DSP in the final IF stage. The TS-990S main receiver employs a 1st IF frequency 8.248 MHz down-conversion format. It achieves superior close-in dynamic range unattainable through conventional up-conversion formats. Even if the interference is a close-in frequency, the receiver maintains a relatively flat dynamic range, which you can tune without losing your target signal.

We have achieved down-conversion format for all amateur bands

A key point in tapping maximum performance from the 1st mixer in actual operation (say, CW operation) is to prevent the outflow of unnecessary signals, other than the target signal, from the mixer to the subsequent stage. This is because it can tap the maximum performance of the digital IF filter using the DSP in the final IF stage. The TS-990S main receiver employs a 1st IF frequency 8.248 MHz down-conversion format. It achieves superior close-in dynamic range unattainable through conventional up-conversion formats. Even if the interference is a close-in frequency, the receiver maintains a relatively flat dynamic range, which you can tune without losing your target signal.

The horizontal axis shows separation of the target signal by interfering signal frequencies (two waves). At a frequency of 10 kHz, interference 1 refers to reception frequency + 10 kHz, and interference 2 refers to reception frequency + 20 kHz.

We have achieved down-conversion format for all amateur bands

A key point in tapping maximum performance from the 1st mixer in actual operation (say, CW operation) is to prevent the outflow of unnecessary signals, other than the target signal, from the mixer to the subsequent stage. This is because it can tap the maximum performance of the digital IF filter using the DSP in the final IF stage. The TS-990S main receiver employs a 1st IF frequency 8.248 MHz down-conversion format. It achieves superior close-in dynamic range unattainable through conventional up-conversion formats. Even if the interference is a close-in frequency, the receiver maintains a relatively flat dynamic range, which you can tune without losing your target signal.

The horizontal axis shows separation of the target signal by interfering signal frequencies (two waves). At a frequency of 10 kHz, interference 1 refers to reception frequency + 10 kHz, and interference 2 refers to reception frequency + 20 kHz.

The newly developed mixer contributes to achieving +40 dBm IP3

In place of the Double Balanced Mixer, which uses the J-FET, we have installed the newly developed Double Balanced Grounded Switch Type in the 1st mixer circuit, which is the heart of the main receiver. The transceiver is also equipped with a pre selector function (works on HF amateur band) that varies its tuning frequency in tandem with the receiver frequency. It effectively dampens interference from strong signals that cannot be minimized through bandpass filters on dedicated amateur bands. Furthermore, we have achieved a +40 dBm class of third-order intercept point for the signal path of the 1st mixer, based on select circuits and components, employing large core toroidal coils for protecting against distortion from large input signals, as well as using relays for the signal switching.

Overwhelmingly the highest quality receiver in the TS series.

The dual receivers facilitate reception on different bands. The main receiver is the highest quality receiver among the TS-900 series, thanks to its down-conversion configuration, newly developed mixer, and five types of roofing filters. This highest quality transceiver will show its true metal in contests, and fierce pile-ups even with high-intensity signals. The TS-990S will surely satisfy any real DX’er.

The newly developed mixer contributes to achieving +40 dBm IP3

In place of the Double Balanced Mixer, which uses the J-FET, we have installed the newly developed Double Balanced Grounded Switch Type in the 1st mixer circuit, which is the heart of the main receiver. The transceiver is also equipped with a pre selector function (works on HF amateur band) that varies its tuning frequency in tandem with the receiver frequency. It effectively dampens interference from strong signals that cannot be minimized through bandpass filters on dedicated amateur bands. Furthermore, we have achieved a +40 dBm class of third-order intercept point for the signal path of the 1st mixer, based on select circuits and components, employing large core toroidal coils for protecting against distortion from large input signals, as well as using relays for the signal switching.

Overwhelmingly the highest quality receiver in the TS series.
The newly developed narrow-band High-IP roofing filters show their true value by cutting adjacent unwanted signals.

The transceiver uses the down-conversion method on all amateur bands, and features five types of High-IP roofing filter. Narrow bandpass widths selectable are 500 Hz and 270 Hz for CW operation, 2.7 kHz for SSB and 6 kHz and 15 kHz, which are suitable for AM/FM. These filters are automatically selected in tandem with DSP-based settings. Of course, manual switching is possible as well.

High C/N levels are realized by dividing high frequencies using the newly developed VCO frequency division 1st local oscillator.

The TS-990S Local Oscillator Circuit is an independent configuration that combines the main receiver and VCO Frequency Division/DDS, the sub-receiver, DDS, transmitter and conventional PLL, with the targeted signal system. The newly developed VCO frequency division format is used for the 1st local oscillator of the main receiver. The device achieves favorable C/N characteristics that rival the DDS direct format, and relatively spurious-free local oscillation signals that are characteristic of the PLL format, by oscillating and dividing the VCO at higher frequencies than the intended frequency. It is possible to convert it to 1st IF in a pure state without leaking the target signal as noise by reducing static noise from the local oscillator and increasing the C/N ratio.

Comes equipped with ±0.1 ppm TCXO, which combines high stability and energy saving.

The standard equipment includes a TCXO (Temperature-Compensated Crystal Oscillator), which stabilizes frequencies at ±0.1 ppm as the standard signal source. Unlike OCXO (Oven Controlled Crystal Oscillator), which requires warm-up time, this device can start up quickly even from the power-off position, while maintaining a high level of stability. It is in compliance with European energy-saving standard Lot 6. Power consumption in stand-by energy-saving mode is less than 0.5 W. A BNC connector on the rear panel provides 10 MHz reference I/O.
Two attractive features of simultaneous reception on different bands are that you can easily check the condition on other bands and still easily handle split-operation.

An already legendary sub-receiver supports dual reception.

Innovation spurred by digital technology has revolutionized the Kenwood sound.

Even after using narrow bandwidth filters for long periods of time, it is still easy to hear and less tiring to listen to.

In addition to introducing AGC control using dedicated DSP, we have further refined the Kenwood sound and reception sound quality transmitted by radio operators worldwide by innovating the analog AGC unit and installing numerous interference and noise elimination functions.

Such innovations have given new life to Kenwood’s legendary sound.

The sub-receiver incorporates the TS-590S receiver

Down-conversion occurs on the 160m/80m/40m/20m/15m bands

The sub-receiver features performance that has exceeded its class since going on sale, thus further refining this popular receiver on the TS-590S. Because this is particularly the case on the front end, where it employs circuit configuration that makes down-conversion possible on the leading five amateur bands, it can be used in actual operation despite being just a sub-receiver.

Roofing filters, 500 Hz, 2.7 kHz

Frequencies of 500 Hz and 2.7 kHz are standard for sub-receiver roofing filters. You can maintain a more or less flat dynamic range even if interference impinges on your reception frequency, thanks to superior close-in dynamic range properties. You can clearly catch signals under conditions made problematic by strong close-in interference signals.
Equipped with dedicated DSP for the main receiver, sub-receiver, and band scope

Kenwood continues to provide quality sound transmission that is unattainable through analog circuits. By installing the world-premiere DSP in the TS-950 and achieving IF AGC control on the TS-870, our experience has led to the use of three DSP units, one on each major block of the TS-990S. By distributing the signal processing of the main IF, band scope, and sub-IF, we have realized ample digital signal processing power. (FM mode is AF DSP processing.)

Advanced AGC control, fusing together digital and analog

The reception sound quality of SSB and CW is not solely determined by audio frequency and filter delay properties. AGC characteristics play a very significant role as well. The opinion of many of our fans that “even for long periods of time they never get tired of listening” is due to the characteristics of Kenwood’s AGC. The TS-990S goes a long way in helping further refine the Kenwood sound by innovating not only the AGC control algorithm on the DSP but also the analog AGC unit as well.

Extensive interference elimination and noise reduction functions

IF filter bandwidth variability

You can vary DSP filter bandwidth and eliminate extensive interference depending on use and condition. You can operate it as a HI CUT/Low CUT function in SSB/AM/FM mode, and WIDTH/SHIFT function in CW/FSK/SSB-DATA transmission mode.

IF filter A/B/C one-touch switch instantly

It is possible to preset a maximum of three IF filter bandwidths and switch instantly at any time. Set for narrow or wide, such a function is convenient for competitions requiring quick operations.

IF notch

You can eliminate overpowering interference signals with a notch filter and catch intended weak signals. You can switch between the IF auto notch and the manual notch that can be changed manually, depending on the state of interference.

Band elimination filter function

The filter is capable of varying the stopband bandwidth and the amount of loss. When signals that interfere with the target signal multiply, this is a convenient function for operations such as dampening interference signals, even if it cuts down some of the target signal.

The noise blanker function (NB1/NB2) is equipped with digital/analog 2 format

Equipped with an analog noise blanker (NB1) which is considered effective against weak noise, and a digital noise blanker (NB2). Choose the NB1 or NB2 based on noise type and reception condition. With NB1, stable noise reduction is possible without depending on reception bandwidth. NB2 is effective against noise that cannot be tracked by an analog noise blanker. Plus, both the NB1 and NB2 can be used simultaneously with the TS-990S.

DSP-based noise reduction function (NR1/NR2)

The device is also equipped with two types of noise reduction format—NR1 and NR2. An optimal noise reduction format is applied to each reception mode for NR1. And for NR2, SPAC method is applied which is more effective in CW operation.

<Other extensive interference elimination and noise reduction functions>

- Beat cancel function (BC1/BC2)

 The beat cancel function is effective against relatively weak, multiple beats, whereas the IF auto notch is effective against strong beats.

- Audio peak filter

 You can vary bandpass width of pitch tone when there are carrier receptions like CW and FSK. FSK is compatible with mark and space frequencies.
Transmitter performance, featuring high-scale specifications, can withstand long periods of operation at full power. Operating stably even when continually working over long periods of time, such as in competitions.

High reliability design promises stable operation at 200 W

The POWER MOS FET VRF150MP runs at 50 V in push-pull. You can obtain a stable output of 200 W on all bands. You achieve superior IMD properties by pursuing bias and matching conditions in order to fully exploit the FET attributes. Further, you can realize Kenwood’s distinctive tone by amplifying the clean modulated signal produced by DSP with an amplifier that exhibits excellent linearity.

Built-in automatic antenna tuner capable of high-speed operation

The built-in automatic antenna tuner is a preset type that covers amateur band frequencies ranging from 160 m~6 m, and is completely operable during receive. The tuner is capable of rapid QSY based on instantaneous band change, using a relay system known for high-speed operations. The relays, capacitors, and inductors use large-sized components that are able to bear the 200 W output.

Cooling system to send a sufficient volume of air to each unit

Cooling is very important to obtain a stable output of 200 W. Heat dissipation efficiency is increased in the TS-990S through a large fin-type aluminum heat sink. An independent variable-speed fan is provided for the switching power supply, final unit, and antenna tuner, cooling each unit with a sufficient air supply. The switching power supply and the final unit have twin cooling fans. Noise is reduced by controlling the fan speed according to the temperature.
Fitted with dual TFT displays for an intuitive situational awareness.

The combination of two displays, main and sub band, allows you to simultaneously monitor the target signal and the surrounding area with minimal eye movement.

Dual display

Monitor the area surrounding the target signal with the main display

Main display

The main display shows basic information about the frequency, mode, meter, and other functions, as well as the on/off status of the other accessory functions. You can also view internal parameter settings and memory lists. In addition, it features a band scope function that allows you to monitor band status. Execute fast sweeps with FFT processing using DSP. Switch to different view modes such as waterfall and reception/transmission equalizer views.

Main display example views

- Waterfall view
- Equalizer view
- RTTY Reception view

Sub band display monitors the target signal itself

The 3.5” TFT sub band display is located above the main knob, which not only reduces eye movement in reading the frequency, but also allows you to monitor the target signal itself by displaying the demodulated audio spectrum. In addition, filter effects can be displayed on the easy-to-see sub band display, allowing for intuitive operation. You can switch the sub band display among the four different view modes below according to your intention.

When you are in the mood for a change, how about these display modes?

- **Main display**
 - Analog dial display
 - Wide dial display (Reception specific)
- **Sub band display**
 - Dual frequency display
 - Single frequency display with virtual dial
 - FSK mode
 - PSK mode

Dual display

Simultaneous display

Touch-sensitive main screen

Simply touch the main screen for quick QSY.
Comfortable operational performance that you can control at will.

The panel layout, familiar to Kenwood users, allows for intuitive operation. It’s sure to win you over, increasing the accuracy of your operations and allowing you to develop greater familiarity with the equipment.

The new frequency function can be operated intuitively

You can use the frequency function that switches legacy VFO A/VFO B by switching the main and sub band. Turn the sub band reception on and off using the RX key on top of the main knob, and switch between simplex and split using the TX key. A single glance at the LED lighting lets you know the current status.

The new split function allows you to use quick settings

Similar to the legacy series, you can add functions via M/S and M/S giving a dual-action quick-split setup.

1. Hold down the Sub Band TX key, and the split LED will flash.
2. When the transmission frequency is set.
 - To set 2UP, simply press 2 on the numeric keypad, and the sub band VFO will change +2 kHz from the main reception frequency; split set up is now complete. To set 1DOWN, press 0 and then 1 on the numeric keypad, and you can set increments of 1 kHz from ±1~9 kHz.

You can also input split and sub band reception states into memory

Memory for a maximum of 120 channels is available. In addition to the repeater frequency, you can also preset beacons and transmission stations. You can easily call up the states of simultaneous dual reception using the dual channel memory.
Conveniently located interference elimination controls of the sub-receiver

The dedicated sub-receiver has extensive interference elimination capability and is conveniently located to the right side of the main panel. Access the knobs and keys you need without hesitation. Share the use of main and sub band variable encoders by switching the operations object. An LED is lit when operating the sub band to prevent accidental operation (this can also be dedicated to the main encoder variable bandwidth). Other functions have been significantly upgraded in the TS-990S from the TS-590S, including band elimination filters, APF, mute, the addition of slope switching in the DSP IF FILTER, independent AGC OFF key, and simultaneous use of NB1/NB2.

Useful functions positioned around the main and sub band knob

Frequently used functions are centrally placed in the immediate vicinity of the main and sub band knob. Supporting quick operation for radio sporting.

Increased user-friendliness by placing two USB ports on the front panel

We equipped the front panel with two USB ports, a key jack, microphone jack and a headphone jack. Use USB memory or a keyboard.

Firmware updates by USB

Switch to update mode and insert USB memory into the USB-A port on the front panel, and the update will automatically begin. Or access your USB memory from your PC by connecting your PC via USB cable to the USB-B port on the rear panel, switch to update mode, and a folder named TS-990 will appear on your computer.

DATA mode supported by external I/O switching

There are a variety of I/O interfaces, including the microphone jack, analog audio input and output, USB audio interface, and optical digital interface. By combining DATA mode (1-3) with SSB/FM/AM modes, it is possible to easily switch between an external device for modulation and demodulation. Switch between DATA VOX function and mute for each modulated line.

Transmit and receive DSP equalizers

In addition to the legacy presets, up to a maximum of three user settings can be configured. You can store the equalizer settings used for each mode and enjoy a very comfortable rag-chew session with others.

Voice guidance / recording function

Equipped with voice guidance for frequencies, key control, and setting. You can also record and replay your message.

Remote control the TS-990S from your PC

Using the ARCP-990 software (radio control software), you can control most functions from your PC. Control the memory channel, settings, and functions using your PC. Download the free software from the Kenwood website.

Kenwood SKY COMMAND SYSTEM II

Enables full-duplex operation with improved functionality such as visual confirmation of HF frequency on the LCD panel. Control via TNC (AX.25) enables more access to HF functions: XIT, mode switching, split-frequency operations on/off, memory shift, and frequency step selection. The transporter sends out its pre-programmed call sign via CW every 10 minutes.

Increased user-friendliness by placing two USB ports on the front panel

We equipped the front panel with two USB ports, a key jack, microphone jack and a headphone jack. Use USB memory or a keyboard.

Voice guidance / recording function

Equipped with voice guidance for frequencies, key control, and setting. You can also record and replay your message.
Front/Back Panel

Front Panel
1. Headphone Jack (ϕ6.3 mm)
2. Paddle Keyer (ϕ6.3 mm)
3. USB Connector (USB-A): USB Memory, USB Keyboard
4. Microphone Jack (8 Pin Metal Type)

Back Panel
1. Antenna Connector ×4
2. RX IN Connector (RCA): Receive Only Antenna Terminal
3. RX OUT Connector (RCA): External Receiver Connection Terminal
4. Key Jack (ϕ6.3 mm): For Paddle, Straight Key, and PC Keying
5. ACC2 Connector (13 Pin DIN): Audio I/O and Other Accessories Connection
6. Remote Connector (7 Pin DIN): Linear Amplifier Connection
7. Meter Jack (ϕ3.5 mm): Analog Meter Connection
8. Drive Connector (RCA): Drive Output
9. Ground Terminal
10. Standard External I/O Terminal (BNC): 10 MHz

Dimensions

Front/Rear Panel
Main Options

- MC-90 Deluxe Desktop Microphone
- MC-60A Deluxe Desktop Microphone
- MC-43S Hand Microphone
- HS-5**1 Open-Air Deluxe Headphones
- HS-6**1 Light Weight Headphones
- SP-990 External Speaker
- ARCP-990 Radio Control Program
- ARHP-990 Radio Host Program
- MC-90
- MC-60A
- MC-43S
- HS-5**1
- HS-6**1
- SP-990
- ARCP-990
- ARHP-990

TS-990S Specifications

General

- Frequency range (Transmitter):
 - 160m band: 1.8 ~ 2.0 MHz
 - 80m band: 3.5 ~ 4.0 MHz
 - 60m band: 5.1675, 5.25 ~ 5.45 MHz
 - 40m band: 7.0 ~ 7.3 MHz
 - 30m band: 10.1 ~ 10.15 MHz
 - 20m band: 14.0 ~ 14.36 MHz
 - 17m band: 16.068 ~ 16.186 MHz
 - 15m band: 21.0 ~ 21.45 MHz
 - 12m band: 24.89 ~ 24.99 MHz
 - 10m band: 28.0 ~ 29.7 MHz
 - 6m band: 50.0 ~ 54.0 MHz
- Frequency range (Receiver):
 - 0.13 ~ 30 MHz, 50 ~ 54 MHz**1
 - VFO: Continuous 30 kHz ~ 60 MHz
- Mode:
 - A1A (CW), J3E (SSB), F1B (FSK), A3E (AM), F3E (FM)
- Frequency stability:
 - Within ±0.1 ppm 32 °F~122 °F (0 °C ~ +50 °C)
- Antenna impedance: 50 Ω
- Antenna tuner load range: 16.7 Ω ~ 150 Ω
- Standard voltage: AC 120 V (60 Hz)
- Supply voltage range: AC 90 V ~ 132 V / 180 V ~ 264 V
- Power consumption:
 - At transmit (maximum): 720 VA or less
 - At receive (no signal): 120 VA or less
- Usable temperature range:
 - 32 °F~122 °F (0 °C ~ +50 °C)
- Dimensions:
 - Front panel:
 - W: 18.11 in (460 mm), H: 6.50 in (165 mm), D: 15.75 in (400 mm)
 - Rear panel:
 - W: 18.11 in (460 mm)
- Weight: Approximately 54.01 lbs (24.5 kg)

Transmitter

- Output power:
 - CW/SSB/FSK/PSK/FM (AM): 200 W (50 W)
- Modulation:
 - SSB: Balanced, AM: Low Power, FM: Reactance
- Maximum frequency deviation (FM):
 - Wide: ±5 kHz or less, Narrow: ±2.5 kHz or less
- Spurious emissions:
 - HF (Harmonics): ±50 dB or less
 - 50 MHz: ±60 dB or less
- Carrier suppression:
 - 60 dB or less
- Unwanted sideband suppression:
 - 40 dB or less
- Transmit frequency response:
 - Within 6 dB (200 ~ 2700 Hz)
- Microphone impedance:
 - 600 Ohm
- XIT variable range:
 - ±9.999 kHz

Receiver

- Circuit type:
 - Main: Double superhetodyne
 - Sub 1**: Double superhetodyne
 - Sub 2**: Triple superhetodyne
- Intermediate frequency:
 - 1st IF: 6.248 MHz
 - 2nd IF (SSB): 24 kHz / (455 kHz)
 - 3rd IF (FM): -
- Sensitivity (TYP):
 - SSB, CW, FSK, PSK (SN 10 dB):
 - 0.5 μV (0.13 ~ 0.522 MHz)
 - 4 μV (0.522 ~ 1.705 MHz)
 - 2.2 μV (1.705 ~ 24.5 MHz)
 - 0.13 μV (24.5 ~ 50 MHz)
- AM (SN 10 dB):
 - 6.3 μV (0.13 ~ 0.522 MHz)
 - 32 μV (0.522 ~ 1.705 MHz)
 - 2 μV (1.705 ~ 24.5 MHz)
 - 1.3 μV (24.5 ~ 30 MHz)
- FM (12 dB SINAD):
 - 0.22 μV (28 ~ 30 MHz)
 - 0.22 μV (50 ~ 54 MHz)
- Image Rejection Ratio (50 MHz):
 - 70 dB (80 dB) or less
- Filter Rejection Ratio:
 - 70 dB or less
- Selectivity:
 - SSB (6.2/30 Hz): 2.4 kHz or more (<4 dB)
 - CW, FSK, PSK (WIDTH=900 Hz):
 - 600 Hz or more (<4 dB)
 - AM (LOC130 / H=1300 Hz):
 - 12 kHz or less (<6 dB)
 - FM:
 - 25 kHz or less (<50 dB)
- XIT variable range:
 - ±8.999 kHz
- Notch filter attenuation:
 - 60 dB or more (Auto), 70 dB or more (Manual)
- Beat cancel attenuation:
 - 40 dB or more
- Audio output:
 - 1.5 W or more (8 Ω)
- Audio output impedance:
 - 8 Ω

Kenwood SKY COMMAND SYSTEM II is a registered trademark of JVC Kenwood Corporation in the U.S.

*1 MAIN BAND: Spec. guaranteed in amateur band 160m through 6m
*2 In 160m/80m/40m/20m/15m Amateur band, IF band width 2.7 kHz or less (SSB, CW, FSK, PSK)
*3 Except in above *2

Internal beat may occur during amateur radio band reception depending on combination of main band and sub band frequencies of a main unit. Spurious signal other than reception signal may appear on band scope (waterfall view) too.

*1: HS-5 and HS-6 are monaural. We recommend using stereo headphones to fully utilize simultaneous dual reception function of the main unit.